Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle.

نویسندگان

  • Xuan Liu
  • Huangxian Ju
چکیده

This work used sulfite as a coreactant to enhance the anodic electrochemiluminescence (ECL) of mercaptopropionic acid modified CdTe quantum dots (QDs). This strategy proposed the first coreactant anodic ECL of QDs and led to a sensitive ECL emission of QDs in aqueous solution at relatively low potential. In the presence of dissolved oxygen, the stable ECL emission resulted from the excited QDs. Thus, an ECL detection method was proposed at +0.90 V (vs Ag/AgCl) based on the quenching of excited QDs by the analyte. Using tyrosine as a model compound, whose electrooxidized product could quench the excited QDs and thus the ECL emission, an analytical method for detection of tyrosine in a wide concentration range was developed. Furthermore, by combining an enzymatic cycle of trace tyrosinase to produce the oxidized product with an energy-transfer process, an extremely sensitive method for ECL detection of tyrosine with a subpicomolar limit of detection was developed. The sulfite-enhanced anodic ECL emission provided an alternative for traditional ECL light emitters and a new methodology for extremely sensitive ECL detection of mono- and dihydroxybenzenes at relatively low anodic potential. This strategy could be easily realized and opened new avenues for the applications of QDs in ECL biosensing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong anodic near-infrared electrochemiluminescence from CdTe quantum dots at low oxidation potentials.

Anodic near-infrared electrochemiluminescence (ECL) from CdTe quantum dots was achieved at low potential on a glass carbon electrode and a strategy for greatly enhanced band-gap ECL was presented.

متن کامل

A Simple Image Analysis Method for Determination of Glucose by using Glucose Oxidase CdTe/TGA Quantum Dots

Glucose, as the major energy source in cellular metabolism, plays an important role in the natural growth of cells. Herein, a simple, rapid and low-cost method for the glucose determination by utilizing glucose oxidase and CdTe/thioglycolic acid (TGA) quantum dots (QDs) on a thin layer chromatography (TLC) plate has been described. The detection was based on the combination of the glucose enzym...

متن کامل

Enzyme-quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates.

A simple strategy for the fabrication of the first biosensor based on the intrinsic electrochemiluminescence of quantum dots coupled with an enzymatic reaction is proposed with glucose oxidase as a model, which could be applied in more bioanalytical systems for oxidase substrates.

متن کامل

Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives.

This work reported for the first time the anodic electrochemiluminescence (ECL) of CdTe quantum dots (QDs) in aqueous system and its analytical application based on the ECL energy transfer to analytes. The CdTe QDs were modified with mercaptopropionic acid to obtain water-soluble QDs and stable and intensive anodic ECL emission with a peak value at +1.17 V (vs Ag/AgCl) in pH 9.3 PBS at an indiu...

متن کامل

Ultrasensitive electrochemiluminescence detection of lengthy DNA molecules based on dual signal amplification.

Aimed at the facile detection of lengthy DNA molecules, an easily operated sandwich-type electrochemiluminescence (ECL) DNA biosensor was constructed on a glassy carbon electrode (GCE) based on CdTe quantum dots coated hollow ZnO nanoparticles (CdTe-ZnO NPs)-S(2)O(8)(2-) ECL system in this work. To fabricate a high-performance protocol, the GCE surface was successively modified by graphene nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 80 14  شماره 

صفحات  -

تاریخ انتشار 2008